Global Expression Viewer
t-SNE representation with gene expression
Expression per body part
Median and mean expression
Search gene list
Gene expression heatmap
Download options
Download by body part
Download by project
NOTE: You can only download 1 BioProject at a time to avoid server overload.
Download options
Explore gene metadata
Frequently Asked Questions
- What was the pipeline used to create this atlas?
The pipeline used to create this atlas is summarized below.
- What does “bias-corrected counts” mean?
RNA-seq software tools (including salmon, the one used here) report the number of reads mapped to each transcript, which is typically called raw read counts. However, transcript abundance estimates in raw counts are biased, because variations may be due to differences in gene length and library size. To correct for these biases, we used the “bias correction without an offset” method implemented in the Bioconductor package tximport, which scales raw counts using the average transcript length over samples, and then library size.
- Can I obtain transcript-level abundance estimates with this web application?
Yes. Transcript-level abundances can be obtained in the Download by body part tab.
- Can I obtain a single file with all expression data in the Soybean Expression Atlas v2?
Yes. Quantitative data for gene- and transcript-level abundances can be
found in the FigShare repository associated with this
project,
in RData files named se_atlas_gene.rda
and se_atlas_transcript.rda
,
respectively. These RData files store SummarizedExperiment
objects
with the following assays:
se_atlas_gene.rda
: assays named gene_TPM and gene_counts.se_atlas_transcript.rda
: assays named tx_TPM and tx_counts.
To load the SummarizedExperiment
object into an R session and access
the data, you would run the following R code:
library(SummarizedExperiment)
# Load gene-level abundance data
load("se_atlas_gene.rda")
# Access the matrix with gene expression in TPM
assay(se_atlas_gene, "gene_TPM")
# Access the matrix with gene expression in bias-corrected counts
assay(se_atlas_gene, "gene_counts")
# Access sample metadata
colData(se_atlas_gene)
For more information on how to work with SummarizedExperiment
objects,
check the package’s
documentation.
NOTE: these files are very large, as they store matrices with 52837 rows (genes) and 5481 columns (samples). As R stores data in memory, make sure you have enough memory if you want to work with the entire quantitative data.
- How do I report a bug or issue?
You can open an issue in this GitHub repository that was specifically created as a communication channel with our users.